
Releasing quicker
<matt.chadburn@bbc.co.uk>, Dec 2011

Friday, 2 December 2011
- Why and how?

mailto:matt.chadburn@bbc.co.uk
mailto:matt.chadburn@bbc.co.uk


Context

• One News

• A single code base

• ~30 developers

• Several parallel workstreams

• Hundreds of changes a week

Friday, 2 December 2011
- Not literally a single PAL application, but a single ‘website’ will lots of packages



Continuous Integration

• Lots of automated tests (unit, integration...)

• Automated build processes

• Everyone committing to trunk

• Visible system state

• Production environment clones

Friday, 2 December 2011
- Yay. This is all excellent compared to where we were 3 years ago.



BDD

• BDD = features to code to business value

Friday, 2 December 2011
- Business value is what it’s all about. And BDD helps focus the product team on this fact.
- The quicker we can translate ideas in to features, the better.
- Value is only realised when you can measure it’s positive impact with your audience
- And we are slow at releasing things. A daily release would be a significant overhead on resources.
- Because we delay releases we build a lot of stuff up front and then measure it’s success

 - ... maybe we should be more agile and build in smaller pieces.



Continuous Delivery

• Immediate deployment of editorial priorities

• Allows immediate fix of minor/major bugs

• Removes release overheads and stress

• Removes developer punishments

• Lowers risk of change

Friday, 2 December 2011
- Don’t think of CD is about just being able to push to live, it’s about removing the manual-ness from the production chain.
- Punishment = minor mistake gets pushed to stage means 48hr release delay. Crazy.
- “Lowers risk of change” because changes just flow through the system to live as business as usual.



Shepherding code to live

• Write some code

• Run tests on SANDBOX

• Commit to INT, repeats tests on INT

• Code automatically deployed to TEST if tests succeed, repeat tests on TEST 

• Tester/Developer notified & has a time window to rubber stamp build

• Build gets deployed to STAGE, automatically load tested

• If load testing is successful code deployed to a single LIVE server

• If no errors on that server, code deployed to server farm

Friday, 2 December 2011
- How it might work.
- Perhaps this happens < 24 hours, perhaps within 60 minutes?
- Responsibility on technical leads to make sure this is done with quality in mind.



Blockers

• Manual release process

• Load testing - manual ‘gatekeeping’

• Inability to smoke test releases on subset of users

• Rollbacks / Feature flags

• Production data in non-production environments

• Dependencies

Friday, 2 December 2011
- Release process delay. 48 hours minimum. What value does it add?
- Automate load testing? It can be done, especially just hammering end points with requests.
- Switching things off is simpler than rolling back? http://martinfowler.com/bliki/FeatureToggle.html
- We have a great test environment & usually poor test data
- Project that have lots of upstream dependencies can only move as quickly as their dependencies move.



Risks

• Not enough tests = Broken stuff getting released

• Lazy developers using it as a means to monkey 
patch live

• Still in a manual QA mentality

• We have no as live production clones

Friday, 2 December 2011
- We need more rigorous tests/testers, not stricter release processes and checklists.
- Manual QA should be a communal activity done during development, the less of it the better
- Relationship between developers and test is changing

 ... testers (DiT & manual) are there to help the developers test their features, not to test it for them.
- As Live means we have no environment that is a version for version mirror of live.


